220 research outputs found

    Dynamic Response of Block Copolymer Wormlike Micelles to Shear Flow

    Get PDF
    The linear and non-linear dynamic response to an oscillatory shear flow of giant wormlike micelles consisting of Pb-Peo block copolymers is studied by means of Fourier transform rheology. Experiments are performed in the vicinity of the isotropic-nematic phase transition concentration, where the location of isotropic-nematic phase transition lines is determined independently. Strong shear-thinning behaviour is observed due to critical slowing down of orientational diffusion as a result of the vicinity of the isotropic- nematic spinodal. This severe shear-thinning behaviour is shown to result in gradient shear banding. Time-resolved Small angle neutron scattering experiments are used to obtain insight in the microscopic phenomena that underly the observed rheological response. An equation of motion for the order-parameter tensor and an expression of the stress tensor in terms of the order-parameter tensor are used to interpret the experimental data, both in the linear and non-linear regime. Scaling of the dynamic behaviour of the orientational order parameter and the stress is found when critical slowing down due to the vicinity of the isotropic-nematic spinodal is accounted for.Comment: Accepted by J. Phys.: Condens. Matter, CODEF II Special Issue. 20 pages, 9 figure

    Dynamic Response of Block Copolymer Wormlike Micelles to Shear Flow

    Get PDF
    The linear and non-linear dynamic response to an oscillatory shear flow of giant wormlike micelles consisting of Pb-Peo block copolymers is studied by means of Fourier transform rheology. Experiments are performed in the vicinity of the isotropic-nematic phase transition concentration, where the location of isotropic-nematic phase transition lines is determined independently. Strong shear-thinning behaviour is observed due to critical slowing down of orientational diffusion as a result of the vicinity of the isotropic- nematic spinodal. This severe shear-thinning behaviour is shown to result in gradient shear banding. Time-resolved Small angle neutron scattering experiments are used to obtain insight in the microscopic phenomena that underly the observed rheological response. An equation of motion for the order-parameter tensor and an expression of the stress tensor in terms of the order-parameter tensor are used to interpret the experimental data, both in the linear and non-linear regime. Scaling of the dynamic behaviour of the orientational order parameter and the stress is found when critical slowing down due to the vicinity of the isotropic-nematic spinodal is accounted for.Comment: Accepted by J. Phys.: Condens. Matter, CODEF II Special Issue. 20 pages, 9 figure

    Therapeutic targeting of CK2 in acute and chronic leukemias

    Get PDF
    CK2 is a ubiquitously expressed, constitutively active Ser/Thr protein kinase, which is considered the most pleiotropic protein kinase in the human kinome. Such a pleiotropy explains the involvement of CK2 in many cellular events. However, its predominant roles are stimulation of cell growth and prevention of apoptosis. High levels of CK2 messenger RNA and protein are associated with CK2 pathological functions in human cancers. Over the last decade, basic and translational studies have provided evidence of CK2 as a pivotal molecule driving the growth of different blood malignancies. CK2 overexpression has been demonstrated in nearly all the types of hematological cancers, including acute and chronic leukemias, where CK2 is a key regulator of signaling networks critical for cell proliferation, survival and drug resistance. The findings that emerged from these studies suggest that CK2 could be a valuable therapeutic target in leukemias and supported the initiation of clinical trials using CK2 antagonists. In this review, we summarize the recent advances on the understanding of the signaling pathways involved in CK2 inhibition-mediated effects with a particular emphasis on the combinatorial use of CK2 inhibitors as novel therapeutic strategies for treating both acute and chronic leukemia patients

    Therapeutic potential of targeting sphingosine kinases and sphingosine 1-phosphate in hematological malignancies

    Get PDF
    Sphingolipids, such as ceramide, sphingosine and sphingosine 1-phosphate (S1P) are bioactive molecules that have important functions in a variety of cellular processes, which include proliferation, survival, differentiation and cellular responses to stress. Sphingolipids have a major impact on the determination of cell fate by contributing to either cell survival or death. Although ceramide and sphingosine are usually considered to induce cell death, S1P promotes survival of cells. Sphingosine kinases (SPHKs) are the enzymes that catalyze the conversion of sphingosine to S1P. There are two isoforms, SPHK1 and SPHK2, which are encoded by different genes. SPHK1 has recently been implicated in contributing to cell transformation, tumor angiogenesis and metastatic spread, as well as cancer cell multidrug-resistance. More recent findings suggest that SPHK2 also has a role in cancer progression. This review is an overview of our understanding of the role of SPHKs and S1P in hematopoietic malignancies and provides information on the current status of SPHK inhibitors with respect to their therapeutic potential in the treatment of haematological cancers

    Improving nelarabine efficacy in T cell acute lymphoblastic leukemia by targeting aberrant PI3K/AKT/mTOR signaling pathway

    Get PDF
    Background: Although in recent years, the introduction of novel chemotherapy protocols has improved the outcome of T cell acute lymphoblastic leukemia (T-ALL) patients, refractory and/or relapsing disease remains a foremost concern. In this context, a major contribution was provided by the introduction of the nucleoside analog nelarabine, approved for salvage treatment of T-ALL patients with refractory/relapsed disease. However, nelarabine could induce a life-threatening, dose-dependent neurotoxicity. To improve nelarabine efficacy, we have analyzed its molecular targets, testing selective inhibitors of such targets in combination with nelarabine. Methods: The effectiveness of nelarabine as single agent or in combination with PI3K, Bcl2, and MEK inhibitors was evaluated on human T-ALL cell lines and primary T-ALL refractory/relapsed lymphoblasts. The efficacy of signal modulators in terms of cytotoxicity, induction of apoptosis, and changes in gene and protein expression was assessed by flow cytometry, western blotting, and quantitative real-time PCR in T-ALL settings. Results: Treatment with nelarabine as a single agent identified two groups of T-ALL cell lines, one sensitive and one resistant to the drug. Whereas sensitive T-ALL cells showed a significant increase of apoptosis and a strong down-modulation of PI3K signaling, resistant T-ALL cells showed a hyperactivation of AKT and MEK/ERK1/2 signaling pathways, not caused by differences in the expression of nelarabine transporters or metabolic activators. We then studied the combination of nelarabine with the PI3K inhibitors (both pan and dual γ/δ inhibitors), with the Bcl2 specific inhibitor ABT199, and with the MEK inhibitor trametinib on both T-ALL cell lines and patient samples at relapse, which displayed constitutive activation of PI3K signaling and resistance to nelarabine alone. The combination with the pan PI3K inhibitor ZSTK-474 was the most effective in inhibiting the growth of T-ALL cells and was synergistic in decreasing cell survival and inducing apoptosis in nelarabine-resistant T-ALL cells. The drug combination caused AKT dephosphorylation and a downregulation of Bcl2, while nelarabine alone induced an increase in p-AKT and Bcl2 signaling in the resistant T-ALL cells and relapsed patient samples. Conclusions: These findings indicate that nelarabine in combination with PI3K inhibitors may be a promising therapeutic strategy for the treatment of T-ALL relapsed patients

    Synergistic cytotoxic effects of bortezomib and CK2 inhibitor CX-4945 in acute lymphoblastic leukemia: turning offthe prosurvival ER chaperone BIP/Grp78 and turning on the proapoptotic NF-κB

    Get PDF
    The proteasome inhibitor bortezomib is a new targeted treatment option for refractory or relapsed acute lymphoblastic leukemia (ALL) patients. However, a limited efficacy of bortezomib alone has been reported. A terminal pro-apoptotic endoplasmic reticulum (ER) stress/unfolded protein response (UPR) is one of the several mechanisms of bortezomib-induced apoptosis. Recently, it has been documented that UPR disruption could be considered a selective anti-leukemia therapy. CX- 4945, a potent casein kinase (CK) 2 inhibitor, has been found to induce apoptotic cell death in T-ALL preclinical models, via perturbation of ER/UPR pathway. In this study, we analyzed in T- and B-ALL preclinical settings, the molecular mechanisms of synergistic apoptotic effects observed after bortezomib/CX-4945 combined treatment. We demonstrated that, adding CX-4945 after bortezomib treatment, prevented leukemic cells from engaging a functional UPR in order to buffer the bortezomibmediated proteotoxic stress in ER lumen. We documented that the combined treatment decreased pro-survival ER chaperon BIP/Grp78 expression, via reduction of chaperoning activity of Hsp90. Bortezomib/CX-4945 treatment inhibited NF-κB signaling in T-ALL cell lines and primary cells from T-ALL patients, but, intriguingly, in B-ALL cells the drug combination activated NF-κB p65 pro-apoptotic functions. In fact in B-cells, the combined treatment induced p65-HDAC1 association with consequent repression of the anti-apoptotic target genes, Bcl-xL and XIAP. Exposure to NEMO (IKKγ)-binding domain inhibitor peptide reduced the cytotoxic effects of bortezomib/CX-4945 treatment. Overall, our findings demonstrated that CK2 inhibition could be useful in combination with bortezomib as a novel therapeutic strategy in both T- and B-ALL

    Application of the whole-transcriptome shotgun sequencing approach to the study of Philadelphia-positive acute lymphoblastic leukemia

    Get PDF
    Although the pathogenesis of BCR–ABL1-positive acute lymphoblastic leukemia (ALL) is mainly related to the expression of the BCR–ABL1 fusion transcript, additional cooperating genetic lesions are supposed to be involved in its development and progression. Therefore, in an attempt to investigate the complex landscape of mutations, changes in expression profiles and alternative splicing (AS) events that can be observed in such disease, the leukemia transcriptome of a BCR–ABL1-positive ALL patient at diagnosis and at relapse was sequenced using a whole-transcriptome shotgun sequencing (RNA-Seq) approach. A total of 13.9 and 15.8 million sequence reads was generated from de novo and relapsed samples, respectively, and aligned to the human genome reference sequence. This led to the identification of five validated missense mutations in genes involved in metabolic processes (DPEP1, TMEM46), transport (MVP), cell cycle regulation (ABL1) and catalytic activity (CTSZ), two of which resulted in acquired relapse variants. In all, 6390 and 4671 putative AS events were also detected, as well as expression levels for 18 315 and 18 795 genes, 28% of which were differentially expressed in the two disease phases. These data demonstrate that RNA-Seq is a suitable approach for identifying a wide spectrum of genetic alterations potentially involved in ALL

    Dictyostelium discoideum as a Model to Study Inositol Polyphosphates and Inorganic Polyphosphate

    Get PDF
    The yeast Saccharomyces cerevisiae has given us much information on the metabolism and function of inositol polyphosphates and inorganic polyphosphate. To expand our knowledge of the metabolic as well as functional connections between inositol polyphosphates and inorganic polyphosphate, we have refined and developed techniques to extract and analyze these molecules in a second eukaryotic experimental model, the amoeba Dictyostelium discoideum. This amoeba, possessing a well-defined developmental program, is ideal to study physiological changes in the levels of inositol polyphosphates and inorganic polyphosphate, since levels of both molecules increase at late stages of development. We detail here the methods used to extract inositol polyphosphates using perchloric acid and inorganic polyphosphate using acidic phenol. We also present the postextraction procedures to visualize and quantify these molecules by polyacrylamide gel electrophoresis and by malachite green assay
    corecore